jueves, 29 de noviembre de 2012

El Modelo Inflacionario


El modelo de la “inflación”, se basa en una expansión casi exponencial del universo cuando este contaba con aprox. 10-35 segundos de vida. Durante esta expansión acelerada todas las perturbaciones primordiales relevantes habrían sido empujadas fuera del “radio de Hubble”.
El modelo inflacionario supone que todas las perturbaciones cosmológicas que darán origen a las diferencias de densidad de materia necesaria para formar las galaxias y demás megaestructuras del universo, nacen de fluctuaciones cuánticas en el interior del radio de Hubble y, por lo tanto, estarían causalmente conectadas.

El Gran Colisionador de Hadrones

El Gran Colisionador de Hadrones, es un acelerador colisinador de particula subicado en la Organizacion Europea para la Investigacion  Nuclear, , cerca de Guinebra, en la frontera.. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeVde energia, siendo su propósito principal examinar la validez y límites del Modelo Estandar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.
Dentro del colisionador dos haces de protones son acelerados en sentidos opuestos hasta alcanzar el 99,99% de la velocidad de la luz  y se los hace chocar entre sí produciendo altísimas energías (aunque a escalas subatómicas) que permitirían simular algunos eventos ocurridos inmediatamente después del big bang.
El LHC es el acelerador de partículas más grande y energético del mundo.1 Usa el túnel de 27 km de circunferencia  creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés) y más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.
Por la tecnologia actual.Hacer un recorrido lineal requeriria varias veces los 27 km que tiene el circuito cerrado , resultaria muy caro y seria inestable.
En un acelerador de un circuito cerrado se puede dar mas empuje a las particulas sin tener que extender la longitud de su recorrido.El limite es la capacidad de hacer girar una particula cargada a la que se entrego mucha energía.
No se advierte que los pueda ver.El universo hace constantemente lo que hara el acelerador y no se ha visto consecuencia catastroficas.

Origen del Universo (teoria del big bang)


Origen del Universo (teoria del big bang)

LA TEORIA DEL BIG BANG

La teoria del Big Bang y el origen del Universo

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

Cosmología del universo


Cosmología del universo


Meteorito Asteroide que impactara en la Tierra en el 2012

LLUVIA DE METEOROS.
El sol.

miércoles, 28 de noviembre de 2012

satelites y meteoros


SATÉLITES


¿Qué diferencia hay entre un satélite natural y uno artificial?

Un satélite natural es un cuerpo que gira en torno a un planeta, como nuestra Luna, y que se formó generalmente en los comienzos del sistema solar, como resultado de colisión entre rocas espaciales más pequeñas, o, como en el caso de nuestra Luna, por los restos que salieron de la colisión de un asteroide contra la Tierra
Un satélite artificial, en cambio, es un objeto que gira en torno a la Tierra y que lo puso ahí el ser humano, ya sea para favorecer las telecomunicaciones o, como los satélites meteorológicos, para conocer las presiones atmosféricas y poder hacer previsiones en cuanto al tiempo atmosférico.

¿Cómo están equipados los satélites artificiales?

El diseño de los satélites ha evolucionado desde aquellos años del Sputnik I hasta la actualidad; sin embargo, su razón de ser sigue siendo la misma, así como la de la mayor parte de sus elementos. El paso del tiempo y los logros en las tecnologías han proporcionado instrumentos más precisos, sistemas de provisión de energía eléctrica más potentes y componentes de menor peso, pero todos ellos, en esencia, no han cambiado mucho, hay quienes afirman que la astronáutica es aún una ciencia demasiado joven.
Los satélites pueden dividirse de manera conveniente en dos elementos principales, la carga útil y la plataforma. La carga útil es la razón de ser del satélite, es aquella parte del satélite que recibe, amplifica y retransmite las señales con información útil; pero para que la carga útil realice su función, la plataforma debe proporcionar ciertos recursos:

*La carga útil debe estar orientada en la dirección correcta.
*La carga útil debe ser operable y confiable sobre cierto periodo de tiempo especificado.
*Los datos y estados de la carga útil y elementos que conforman la plataforma deben ser enviados a la estación terrestre para su análisis y mantenimiento.
*La órbita del satélite debe ser controlada en sus parámetros.
*La carga útil debe de mantenerse fija a la plataforma en la cual está montada.
*Una fuente de energía debe estar disponible, para permitir la realización de las funciones programadas.

¿Cómo se clasifican los satélites naturales?

En el Sistema Solar se puede clasificar a los satélites según:
Satélites pastores: Cuando mantienen algún anillo de Júpiter, Saturno, Urano o Neptuno en su lugar.
Satélites troyanos: Cuando un planeta y un satélite importante tienen en los puntos de Lagrange L4 y L5 otros satélites.
Satélites coorbitales: Cuando giran en la misma órbita. Los satélites troyanos son coorbitales, pero también lo son los satélites de Saturno Jano y Epimeteoque distan en sus órbitas menos de su tamaño y en vez de chocar intercambian sus órbitas.
Satélites asteroidales: Algunos asteroides tienen satélites a su alrededor como (243) Ida y su satélite Dactyl. El 10 de agosto de 2005 se anunció el descubrimiento de un asteroide (87) Silvia que tiene dos satélites girando a su alrededor, Rómulo y Remo.

¿Cuáles son los tipos de satélites artificiales?

Tipos de satélite (por tipo de misión)

Armas antisatélite, también denominados como satélites asesinos, son satélites diseñados para destruir satélites enemigos, otras armas orbitales y objetivos. Algunos están armados con proyectiles cinéticos, mientras que otros usan armas de energía o partículas para destruir satélites, misiles balísticos o MIRV.
Satélites astronómicos, son satélites utilizados para la observación de planetas, galaxias y otros objetos astronómicos.
Biosatélites, diseñados para llevar organismos vivos, generalmente con propósitos de experimentos científicos.
Satélites de comunicaciones, son los empleados para realizar telecomunicación. Suelen utilizar órbitas geosíncronas, órbitas de Molniya u órbitas bajas terrestres.
Satélites miniaturizados, también denominados como minisatélites, microsatélites, nanosatélites o picosatélites, son característicos por sus dimensiones y pesos reducidos.
Satélites de navegación, utilizan señales para conocer la posición exacta del receptor en la tierra.
Satélites de reconocimiento, denominados popularmente como satélites espías, son satélites de observación o comunicaciones utilizados por militares u organizaciones de inteligencia. La mayoría de los gobiernos mantienen la información de sus satélites como secreta.
Satélites de observación terrestre, son utilizados para la observación del medio ambiente, meteorología, cartografía sin fines militares.
Satélite espía :Confeccionado con la misión de registrar movimiento de personas
Satélites de energía solar, son una propuesta para satélites en órbita excéntrica que envíen la energía solar recogida hasta antenas en la Tierra como una fuente de alimentación.
Estaciones espaciales, son estructuras diseñadas para que los seres humanos puedan vivir en el espacio exterior. Una estación espacial se distingue de otras naves espaciales tripuladas en que no dispone de propulsión o capacidad de aterrizar, utilizando otros vehículos como transporte hacia y desde la estación.
Satélites meteorológicos, son satélites utilizados principalmente para registrar el tiempo atmosférico y el clima de la Tierra.


Clasificación por excentricidad

Órbita circular: una órbita cuya excentricidad es cero y su trayectoria es un círculo.
Órbita de transferencia de Hohmann: una maniobra orbital que traslada a una nave desde una órbita circular a otra.
Órbita elíptica: una órbita cuya excentricidad es mayor que cero pero menor que uno y su trayectoria tiene forma de elipse.
Órbita de Mólniya: una órbita muy excéntrica con una inclinación de 63,4º y un período orbital igual a la mitad de un día sideral (unas doce horas).
Órbita de transferencia geoestacionaria: una órbita elíptica cuyo perigeo es la altitud de una órbita baja terrestre y su apogeo es la de una órbita geoestacionaria.
Órbita de transferencia geosíncrona: una órbita elíptica cuyo perigeo es la altitud de una órbita baja terrestre y su apogeo es la de una órbita geosíncrona.
Órbita tundra: una órbita muy excéntrica con una inclinación de 63,4º y un período orbital igual a un día sideral (unas 24 horas).
Órbita hiperbólica: una órbita cuya excentricidad es mayor que uno. En tales órbitas, la nave escapa de la atracción gravitacional y continua su vuelo indefinidamente.
Órbita parabólica: una órbita cuya excentricidad es igual a uno. En estas órbitas, la velocidad es igual a la velocidad de escape.
Órbita de captura: una órbita parabólica de velocidad alta donde el objeto se acerca del planeta.
Órbita de escape: una órbita parabólica de velocidad alta donde el objeto se aleja del planeta.

Clasificación por inclinación

Órbita inclinada: una órbita cuya inclinación orbital no es cero.
Órbita polar: una órbita que pasa por encima de los polos del planeta. Por tanto, tiene una inclinación de 90º o aproximada.
Órbita polar heliosíncrona: una órbita casi polar que pasa por el ecuador terrestre a la misma hora local en cada pasada.

Clasificación por sincronía

Órbita areoestacionaria: una órbita areosíncrona circular sobre el plano ecuatorial a unos 17 000 km de altitud. Similar a la órbita geoestacionaria pero en Marte.
Órbita areosíncrona: una órbita síncrona alrededor del planeta Marte con un periodo orbital igual al día sideral de Marte, 24,6229 horas.
Órbita geosíncrona: una órbita a una altitud de 35 768 km. Estos satélites trazarían una analema en el cielo.
Órbita cementerio: una órbita a unos cientos de kilómetros por encima de la geosíncrona donde se trasladan los satélites cuando acaba su vida útil.
Órbita geoestacionaria: una órbita geosíncrona con inclinación cero. Para un observador en el suelo, el satélite parecería un punto fijo en el cielo.
Órbita heliosíncrona: una órbita heliocéntrica sobre el Sol donde el periodo orbital del satélite es igual al periodo de rotación del Sol. Se sitúa a aproximadamente 0,1628 UA.
Órbita semisíncrona: una órbita a una altitud de 12 544 km aproximadamente y un periodo orbital de unas 12 horas.
Órbita síncrona: una órbita donde el satélite tiene un periodo orbital igual al periodo de rotación del objeto principal y en la misma dirección. Desde el suelo, un satélite trazaría una analema en el cielo.


METEOROS


¿Qué significa la palabra meteoro?

Meteoro es un concepto que se reserva para distinguir el fenómeno luminoso que se produce cuando un meteoroide atraviesa nuestra atmósfera. Es sinónimo de estrella fugaz, término impropio, ya que no se trata de estrellas que se desprendan de la bóveda celeste.

¿Cuáles son sus categorías?

Meteoroide: son partículas de polvo y hielo o rocas de hasta decenas de metros que se encuentran en el espacio producto del paso de algún cometa o restos de la formación del Sistema Solar.

Meteoro: es un fenómeno luminoso producido en la alta atmósfera por la ionización del aire causada por los meteoroides interceptados por la Tierra en sus mutuas órbitas alrededor del Sol.
Meteorito: son los meteoroides que alcanzan la superficie de la Tierra debido a que no se desintegran por completo en la atmósfera.

¿Cuáles son los distintos tipos de meteoros?

Condritas: Contienen esferas de rocas creadas por la fusión de los materiales de la nebulosa solar. 

Acronditas: Se parecen a las rocas ígneas terrestres y provienen del cinturón de asteroides. 

Ferrosos: Mezclas de hierro y níquel, proceden de asteroides en los que el metal fundido se separó de los silicatos y se enfrió.

¿Cuándo se provoca una lluvia de meteoros?

Cuando un cometa pasa por el exterior del Sistema Solar, la interacción con el viento solar hace que su superficie se active. Los gases y materiales de la superficie del cometa salen despedidos al espacio, y pasan a orbitar al Sol en órbitas muy similares a las de su cometa de origen. Así se forma una corriente o anillo de partículas, denominado técnicamente enjambre de meteoros. La órbita terrestre cruza algunos enjambres de cometas de período corto, produciendo lluvias de meteorosanuales, como las Leónidas o las Perseidas. Cuando la actividad de una lluvia de meteoros sobrepasa los 1000 meteoros por hora, se la denomina tormenta de meteoritos.


cometas y asteroides


COMETAS


¿Qué son los cometas?
Los cometas son cuerpos celestes constituidos por hielo y rocas que orbitan alrededor del Sol siguiendo diferentes trayectorias elípticas, parabólicas o hiperbólicas. Los cometas, junto con los asteroides, planetas y satélites, forman parte del Sistema Solar. La mayoría de estos cuerpos celestes describen órbitas elípticas de gran excentricidad, lo que produce su acercamiento al Sol con un período considerable.

¿Cuál es la principal diferencia que tienen de los asteroides?
A diferencia de los asteroides, los cometas son cuerpos sólidos compuestos de materiales que se subliman en las cercanías del Sol. A gran distancia (a partir de 5-10 UA) desarrollan una atmósfera que envuelve al núcleo, llamada coma o cabellera. Esta coma está formada por gas y polvo. Conforme el cometa se acerca al Sol, el viento solar azota la coma y se genera la cola característica. La cola está formada por polvo y el gas de la coma ionizado.

¿Cuáles fueron los cometas más famosos?
-Gran Cometa de 1577
-Gran Cometa de 1744: Chéseaux y varios otros observadores reportaron un fenómeno sumamente insólito 'un abanico' de seis colas separadas que sobrepasó el horizonte.
-Gran Cometa de 1811
-Gran Cometa de 1843
-Gran Cometa de 1882
-Cometa 3D/Biela: a finales del siglo XIX se partió en dos, y más tarde en fragmentos minúsculos, dando lugar a una lluvia de estrellas, con lo que desapareció para siempre.
-Cometa Borrelly
-Cometa Coggia: obtuvo mucha fama debido a su extraordinaria belleza.
-Cometa 67P/Churyumov-Gerasimenko. Destino de la sonda espacial europea Rosetta.
-Cometa 2P/Encke
-Cometa Hale-Bopp
-Cometa 1P/Halley: describe su órbita cada 76 años. En 1910 su aproximación a la Tierra, conllevó que su cola rozara con las capas superiores de la atmósfera.



HALLEY
El cometa Halley, oficialmente denominado 1P/Halley, es un cometa grande y brillante que orbita alrededor del Sol cada 75-76 años en promedio, aunque su período orbital puede oscilar entre 74 y 79 años. Es uno de los mejor conocidos y más brillantes cometas de "periodo corto" del cinturón de Kuiper. Halley es el único de período corto que es visible a simple vista desde la Tierra, y también el único cometa a simple vista que quizás aparece dos veces en una vida humana, por lo que del mismo existen muchas referencias de sus apariciones, siendo el mejor documentado.
El regreso del Halley al interior del Sistema Solar fue observado y grabado por astrónomos desde por lo menos el año 240 a. e. c. Claros documentos de las apariciones del cometa fueron hechas por los cronistas chinos, babilónicos y los europeos medievales, pero no fueron reconocidas como reapariciones del mismo objeto en ese entonces. El período orbital del cometa fue determinado por primera vez en 1705 por el astrónomo inglés Edmond Halley, ahora nombre designado para el astro. Se le observó por última vez en el año 1986 en las cercanías de la órbita de la Tierra, y su próxima aparición ocurrirá a mediados de 2061.







ASTEROIDES


¿Qué es un asteroide?

Un asteroide es un cuerpo rocoso, carbonáceo o metálico más pequeño que un planeta y mayor que un meteoroide, que orbita alrededor del Sol en una órbita inferior a la de Neptuno.
Vistos desde la Tierra, los asteroides tienen aspecto de estrellas, de ahí su nombre, que les fue dado por John Herschel poco después de que los primeros fueran descubiertos. Hasta el 24 de marzo de 2006 a los asteroides también se los llamaba planetoides o planetas menores, pero esta definición ha caído en desuso.
La mayoría de los asteroides de nuestro Sistema Solar poseen órbitas semiestables entre Marte y Júpiter, conformando el llamado cinturón de asteroides, pero algunos son desviados a órbitas que cruzan las de los planetas mayores.

¿Cuál es el nombre de los asteroides cercanos a la Tierra?

Los asteroides cercanos a la Tierra (ACT) son asteroides cuyas órbitas son cercanas a la terrestre. Algunas de estas órbitas suponen un peligro de colisión. Por otra parte, los ACT son más fácilmente observables desde naves espaciales que desde la Tierra misma.
Algunos ACT con una órbita altamente excéntrica son probablemente cometas extintos que han perdido sus constituyentes volátiles. De hecho unos cuantos ACT mantienen una cola imperceptible de su pasado cometario. Estos probablemente se han desprendido del Cinturón de Kuiper, un depósito de cometas residentes en cercanía a la órbita de Neptuno. El resto de los ACT parecen ser verdaderos asteroides, desviados del cinturón de asteroides por interacciones gravitacionales con Júpiter o por colisiones entre ellos mismos.
Hay tres familias de ACT:
Los asteroides Atón, caracterizados por tener un rango de órbita radial cercano a una UA (UA, la distancia de la Tierra al Sol).
Los asteroides Apolo, con un rango de órbita radial más grande que el de la Tierra.
Los asteroides Amor, con un rango orbital radial entre la órbita de Marte y la de la Tierra. Los objetos que integran este tipo frecuentemente cruzan la órbita de Marte, pero no la de la Tierra. Las dos lunas de Marte, Fobos y Deimos quizás alguna vez fueron asteroides del tipo Amor que fueron capturados por el planeta rojo.

¿En qué consiste la teoría del cinturón de asteroides?

Los asteroides del cinturón se formaron, según una teoría, a partir de la destrucción de un planeta, un pequeño planeta. Habría que juntar 2.500 veces los asteroides conocidos para tener la masa de la Tierra.
Según otra teoría, un grupo de unos 50 asteroides se formaron con el resto del Sistema Solar. Después, las colisiones los han ido fragmentando.
Dentro del cinturón hay lagunas, zonas donde no gira ningún asteroide, a causa de la influencia de Júpiter, el planeta gigante más cercano.


¿Qué significa PHA?

Potencially Hazardous Asteroids - Asteroide Potencialmente Peligroso

En astronomía, se denomina asteroide potencialmente peligroso o PHA (por las siglas de su nombre inglés potentially hazardous asteroid) a los objetos próximos a la Tierra (tanto cometas como asteroides) cuya distancia mínima de intersección orbital con la terrestre es de 0'05 UA o menor, con una magnitud absoluta de 22'0 o más brillante. Se considera que estos objetos entrañan riesgo cierto de colisionar con la Tierra causando daños que pueden oscilar entre pequeñas destrucciones locales y grandes extinciones.




Planetas gigantes, gaseoso y helados


PLANETAS GIGANTES 



Los planetas ligeros o gigantes se localizan en la parte externa del Sistema Solar. Son planetas constituidos básicamente por hidrógeno, metano y helio, y que además no tienen superficie sólida como en los planetas terrestres . En este caso es posible encontrarlos en distintos lugares del Universo.
Tienen importantes actividades meteorológicas y procesos de tipo gravitacional, con un pequeño núcleo y una gran masa de gas en convección permanente.
Se dividen en dos grandes tipos:

-Un gigante gaseoso es un planeta gigante que no está compuesto mayoritariamente de roca u otra materia sólida sino de fluidos; aunque dichos planetas pueden tener un núcleo rocoso o metálico. Se cree que tal núcleo es probablemente necesario para que un gigante gaseoso se forme, pero la mayoría de su masa es en forma de gas, o gas comprimido en estado líquido.
A diferencia de los planetas rocosos, los gigantes gaseosos no tienen una superficie bien definida. Son Júpiter y Saturno, y también se les denomina “planetas jovianos”.

-En cambio, Urano y Neptuno pertenecen a una subclase separada de planetas gigantes: gigantes helados, que, debido a su estructura, principalmente constituida por hielo, roca y gas, también se les denomina “planetas uranios”. Se diferencian de gigantes gaseosos «tradicionales», como Júpiter y Saturno, porque su proporción de hidrógeno y de helio es mucho más baja, principalmente por su mayor distancia al Sol.


                         La atmósfera de los gigantes gaseosos 

Júpiter y Saturno no tienen una superficie sólida. Son enormes bolas de gas y líquido con una composición muy similar a la del Sol que giran sobre sí mismas a gran velocidad. No en vano, a Júpiter y Saturno se les llama ‘gigantes gaseosos’ por algo (aunque realmente deberían ser ‘gigantes líquidos’, ya que la mayor parte de su interior está en forma líquida o metálica).
La atmósfera superior de los dos planetas está dominada por un llamativo conjunto de bandas y cinturones nubosos que nada tiene que ver con los patrones climáticos de nuestro planeta. ¿A qué se debe esta diferencia? La radiación solar. Efectivamente, en la Tierra el astro rey es el causante de la circulación atmosférica. La gran diferencia de temperaturas entre las regiones tropicales y los polos es el factor principal que rige nuestra atmósfera. Este gradiente de energía provoca la creación de células de convección de Hadley cerca del ecuador y además las montañas y cordilleras se encargan de bloquear los vientos, creando patrones climáticos locales muy característicos.
¿Y qué pasa en Júpiter y Saturno? En este caso, el factor principal es el calor interno. De hecho, la diferencia de temperaturas entre el ecuador y los polos es prácticamente nula, pero para comprender el clima de estos planetas debemos saber primero cómo es su interior. Júpiter y Saturno están formados principalmente por hidrógeno y algo de helio (un 15%), más o menos igual que el Sol. A medida que nos adentramos en el interior de uno de estos mundos, la temperatura aumenta y la atmósfera se va haciendo más densa hasta que el hidrógeno se vuelve líquido. Si seguimos descendiendo el hidrógeno líquido se convierte en hidrógeno metálico.
Precisamente, es esta capa de hidrógeno metálico la causante del los potentes campos magnéticos que rodean a estos planetas. De hecho, si pudiéramos ver a simple vista la magnetosfera de Júpiter, ocuparía un tamaño en el cielo similar al de la Luna llena. Por algo se dice que es el ‘objeto’ más grande del Sistema Solar -después del Sol, obviamente-. ¿Y qué hay en el centro de estos planetas? Nadie lo sabe.

Pero volvamos a la atmósfera superior. Todo el clima de estos planetas tiene lugar en esta capa, que apenas constituye un 1% del conjunto de la atmósfera. Lo primero que nos llama la atención es el patrón de franjas nubosas de estos planetas, mucho más marcado en el caso de Júpiter, pero también visible en Saturno. Las bandas oscuras se conocen como ‘cinturones’, mientras que las claras se denominan ‘zonas’. Las zonas son por lo general masas de aire frío descendentes -recuerda que el ‘aire’ en Júpiter y Saturno es principalmente hidrógeno-, mientras que los cinturones son masas ascendentes. Los vientos de las zonas y cinturones soplan a una velocidad casi constante en la misma dirección, pero a veces en sentidos contrarios entre sí. En Júpiter los vientos pueden alcanzar los 350 km/h, pero Saturno le gana por goleada en este aspecto, con vientos que llegan a los 1800 km/h. Como resultado, la velocidad relativa entre los vientos de zonas y cinturones puede superar los 500 km/h en Júpiter.

El calor interno de los planetas es el que gobierna los vientos y la formación de estructuras en Júpiter y Saturno. ¿Pero de dónde proviene este calor? Uno de los misterios de los gigantes gaseosos es la relativa ausencia de helio en la atmósfera exterior. No obstante, sabemos que el helio forma el 15% de estos mundos. Se cree que el helio, al ser más denso que el hidrógeno, se condensa en la capa de hidrógeno metálico formando enormes gotas que se precipitan hacia el núcleo del planeta, liberando calor en el proceso. Esta lluvia de helio en un mar de hidrógeno metálico es la principal fuente de energía interna de los gigantes gaseosos, a la que debemos añadir el calor residual de formación de ambos planetas.

Pero el calor interno no explica por si solo la estructura en bandas de la atmósfera. La rapidísima rotación es otro factor a tener en cuenta. Júpiter y Saturno tienen un periodo de rotación muy similar, de unas diez horas, lo que provoca un abultamiento ecuatorial visible a simple vista. La famosa expresión ‘la Tierra está achatada por los polos’ se queda corta a la hora de describir lo que ocurre en estos planetas. Esta elevada velocidad de rotación determina también la estabilidad de bandas y cinturones. En la Tierra las tormentas vienen y van en cuestión de horas o días. En Júpiter y Saturno las grandes estructuras nubosas pueden durar fácilmente décadas o siglos. La enorme escala temporal de la atmósfera de Júpiter y Saturno es otra de las diferencias con la atmósfera terrestre.
Por contra, las pequeñas estructuras tienen una vida mucho menor. Las tormentas o remolinos que aparecen en los bordes de las franjas pueden aparecer y desaparecer en cuestión de pocos días, como en la Tierra. Curiosamente, se cree que son estas turbulencias las que generan los vientos zonales y no al revés. Es decir, no es que los fuertes vientos generen remolinos y ciclones, sino todo lo contrario.


Por otro lado, debemos tener cuidado a la hora de exagerar la magnitud del calor interno de los planetas gigantes. Sí, estamos hablando de muchísima energía en términos absolutos, pero la superficie irradiada también lo es. Por eso la potencia generada por esta fuente de calor, aunque superior a la solar, es de apenas unos cuantos vatios por metro cuadrado, mientras que la irradiación del Sol sobre la Tierra es de unos cien vatios por metro cuadrado. No obstante, en el caso de Saturno la mayor inclinación de su eje de rotación (27º frente a los 3º del eje de Júpiter) provoca cambios en la atmósfera de naturaleza estacional, por lo que, a pesar de no ser el factor más importante, la luz del Sol sí que influye en los gigantes gaseosos, o al menos en Saturno.



                             Composición de los Gigantes Helados

Los planetas gigantes helados tienen una gran cantidad de volátiles atrapados en forma de hielo, como agua, metano y amoniaco alrededor de un núcleo de elementos pesados capaz de retener una atmósfera de hidrógeno-helio que normalmente llega a ser el 10% de la masa total del planeta. La mínima masa de estos planetas es de unas 10 masas terrestres, necesarias para atrapar una atmósfera como la descrita. En el Sistema Solar, planetas de este tipo serían Urano y Neptuno con masas entre 14 y 17 veces la de la Tierra.

Las capas atmosféricas son muy brumosas, con una pequeña cantidad de metano, que les aporta sus característicos colores aguamarina y azul ultramar, respectivamente. En ambos existen campos magnéticos fuertemente inclinados con respecto a sus ejes de rotación. A diferencia de los otros gigantes gaseosos, en Urano la inclinación axial es muy elevada, lo cual provoca que sus estaciones tiendan a ser sumamente extremosas.
En los dos planetas ocurren otras diferencias sutiles, pero importantes. A pesar de que, en general, Urano es menos masivo que Neptuno, contiene más hidrógeno y helio. Neptuno es por lo tanto más denso y preserva mucho más calor interno y un ambiente más activo.

Urano:
 es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de -224 °C. Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano. En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.
Urano tiene un sistema de anillos, una magnetosfera, y satélites numerosos. El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy tumbado, casi hasta su plan de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador. En 1986, las imágenes del Voyager 2 mostraron a Urano como un planeta sin ninguna característica especial de luz visible e incluso sin bandas de nubes o tormentas asociadas con los otros gigantes. Sin embargo, los observadores terrestres han visto señales de cambios de estación y un aumento de la actividad meteorológica en los últimos años a medida que Urano se acerca a su equinoccio. Las velocidades del viento en Urano pueden llegar o incluso sobrepasar los 250 metros por segundo (900 km/h).


Neptuno:
es el octavo planeta en distancia respecto al Sol y el más lejano del Sistema Solar. Forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre fue puesto en honor al dios romano del mar —Neptuno—, y es el cuarto planeta en diámetro y el tercero más grande en masa. Su masa es 17 veces la de la Tierra y ligeramente más masivo que su planeta «gemelo» Urano, que tiene 15 masas terrestres y no es tan denso. En promedio, Neptuno orbita el Sol a una distancia de 30,1 UA. Su símbolo astronómico es ♆, una versión estilizada del tridente del dios Neptuno.
Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton.Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1611, pero lo había confundido con una estrella.
Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del Sistema Solar se encuentran en Neptuno.
Neptuno es un planeta azulado muy similar a Urano, es ligeramente más pequeño que éste, pero más denso.


 NEPTUNO

URANO

Instituto Argentino de física del Espacio


                                                      Aspectos institucionales

El Instituto de Astronomía y Física del Espacio (IAFE) fue creado por el Consejo Nacional de Investigaciones Científicas y Técnicas en Diciembre de 1969 y comenzó a funcionar como tal en Abril de 1971. 
En 1964, el Consejo Nacional de Investigaciones Científicas y Técnicas crea uno de sus primeros institutos de investigación, el Centro Nacional de Radiación Cósmica, firmándose un convenio entre el CONICET, la Comisión Nacional de la Energía Cósmica, y la Facultad de Ciencias Exactas de la Universidad de Buenos Aires para el apoyo conjunto de dicho Centro.
Así nace el IAFE, organismo en el cual se intenta atacar problemas que están fuera de la temática de otros institutos, y lograr la interacción entre astrónomos, físicos e ingenieros. Este instituto tiene por misión realizar investigaciones en el campo de las ciencias del Universo, tanto desde el punto de vista observacional como teórico. 

                                                  Actividades que se desarrollan

Hay talleres vocacionales semanales para estudiantes secundarios, charlas abiertas al público y existe un espacio joven donde becarios exponen el tema de sus tesis y ensayan en un ambiente familiar para futuros coloquios.

                                                           Instrumental que poseen

-Fotómetro de alta resolución temporal 

-Montura para un telescopio refractor f10 de 15cm de apertura

-Espectrómetro de airglow 

El espectrómetro, o espectrógrafo, es un aparato capaz de analizar el espectro característico de un movimiento ondulatorio. Se aplica a variados instrumentos que operan sobre un amplio campo de longitudes de onda.

-Dos supermonitores de neutrones.

-Detectores transportados por globos.

-Cohetes fabricados en el Instituto de Investigaciones Aeronáuticas y Espaciales.

                                             Proyectos de investigacion
Las principales líneas de investigación que se desarrollan en la IAFE están referidas al  campo de la Astronomía, Astrofísica teórica, Colisiones atómicas, Física de la Alta Atmósfera y Física de la Teledetección terrestre, entre otras.
La programática actual del Instituto no sólo contempla experimentos con globos estratosféricos y con cohetes, sino que también incluye temas de investigación en astrofísica teórica y observacional, elegidos de tal manera que la temática general del Instituto sea coherente y armónica.
También se desarrollan investigaciones científicas en el campo de la Astronomía y la Física del Espacio, centrado en problemas astrofísicos no cubiertos por otras instituciones nacionales, se brinda consejos y ayuda a otros institutos interesados en los mismos campos de investigación, se divulga información acerca de los temas que investiga, a través de los medios y procedimientos apropiados, se contribuye a la formación de investigadores en estos campos, se mantiene relaciones científicas con instituciones similares nacionales, extranjeras e internacionales; y se lleva a cabo desarrollos tecnológicos, especialmente en el área de la electrónica, transferibles a otros sectores del sistema científico-tecnológico del país. 
El 27 de agosto de 2010 el Instituto de Astronomía y Física del Espacio (IAFE), celebró su 40mo aniversario a poco de lanzar el Nuevo Observatorio Virtual Argentino (NOVA); Puso en marcha un telescopio en San Juan para búsqueda de planetas extrasolares e impulsar proyectos mundiales para que se instalen en el país un radiotelescopio para ondas milimétricas y un conjunto de espejos para rayos gamma, similar al que está en África y revoluciona el conocimiento de altas energías del cosmos.





Observatorio Astronómico Municipal de Rosario



                                                 Aspectos institucionales

 El Observatorio Astronómico Municipal “Profesor Víctor Capolongo”, fue inaugurado el 18 de junio de 1970 y lleva el nombre de su primer director.
Este Observatorio cumple tareas de divulgación, docencia e investigación en el campo de la astronomía y ciencias afines e informa al público de fenómenos que se producen en el cielo, como eclipses, configuraciones planetarias, pasajes de cometas, etc. Normalmente el Observatorio puede ser visitado por el público en forma gratuita para realizar observaciones directas de los objetos celestes, los días Lunes y Jueves de 21 a 22 horas.   Instrumental que poseen

El Observatorio cuenta con instrumentos de observación de alta calidad, constituidos por:

-Un telescopio reflector de 150 mm. de abertura y 2250 mm. de distancia focal.

-Un telescopio reflector de 300 mm. de abertura (diámetro del espejo principal) y 4500 mm. de distancia focal.

Estos instrumentos permiten la observación visual y la obtención de fotografías de los distintos objetos celestes, aunque sus características constructivas y las especificaciones de los accesorios, los capaciten principalmente para la observación de objetos brillantes como el Sol, la Luna, y los Planetas.

                                                 Actividades que desarrollan

En el salón Nicolás Copérnico se dictan cursos de Astronomía para aficionados, Conferencias y se realizan actividades culturales, con la colaboración de la Asociación de Amigos de la Institución. 


                                                  Proyectos de investigación

Cabe destacar la trascendente tarea desempeñada por esta asociación, que permanentemente organiza y dicta cursos sobre: Astronomía General, Mecánica Celeste, Física Cuántica, Aceleradores de Partículas, Constelaciones, Supernovas, Materia Oscura y Cielo Profundo. Constituyendo un excelente aporte a la difusión de las Ciencias y una Práctica exclusiva de Observación a cielo abierto y con telescopios.
Se pueden realizar, también, experiencias prácticas de óptica, luz láser, energía estática, propagación de las radiaciones electromagnéticas, observaciones en telescopio y microscopio.
Se desarrollan cursos y conferencias y se emplean dos métodos de difusión: el audiovisual que se basa en programas especiales de video-ciencia y computación, exposición de maquetas, fotografías, paneles y elementos especiales; y el experimental que se relaciona con la participación activa del visitante.

Instituto Argentino de Radioastronomía 


                                                     Apectos Institucionales:

Nombre: Instituto Argentino de Radioastronomía (IAR)  
Dependencia: Consejo Nacional de Investigaciones Científicas y Técnicas (CCT La Plata - CONICET  


El 26 de marzo de 1966 se inauguró oficialmente el Instituto de Radioastronomía y desde entonces produce ciencia de primer nivel con un plantel muy calificado de profesionales que realizan varias actividades de investigación, divulgación, transferencia tecnológica y servicios. La radioastronomía en Argentina se inicia en 1958, cuando se instaló en la Facultad de Agronomía en la Universidad Nacional de Buenos Aires (UBA) un interferómetro solar en 86 MHz y a su vez se creó la Comisión de Astrofísica y Radioastronomía (CAR). Al crecer el interés y debido a la posición privilegiada del país, el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), la Universidad Nacional de La Plata (UNLP) y la UBA deciden en 1962 crear el Instituto Argentino de Radioastronomía (IAR) cuyas funciones serían: promover y coordinar la investigación y desarrollo técnico de la radioastronomía y colaborar en la enseñanza. Científicos e ingenieros viajan al exterior para perfeccionar sus conocimientos y adquirir experiencia en técnicas de observación de la línea de 21cm. La "Carnegie Institution of Washington" (CIW) colaboró enviado partes de la primera antena de 1420 MHz .
Actualmente el IAR depende del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina y se encuentra enclavado en el Parque Pereyra Iraola.



                                                         Instrumental que posee

Observatorio
La actividad observacional del IAR se centra en el uso de dos radiotelescopios de disco simple y 30 m de diámetro, que pueden funcionar con una variedad de receptores, que permiten realizar estudios de líneas espectrales como la de 21 cm, el continuo de radio, y la polarización de la radiación recibida.
 El Instituto cuenta con dos antenas parabólicas de 30m. de diámetro cada una. Cada reflector parabólico consiste de una estructura central de acero que soporta costillas de aluminio sobre las cuales se ajusta una malla de acero perforada. El peso aproximado de cada antena es de 30 toneladas.

Radiotelescopios
Un radiotelescopio está formado por tres partes fundamentales: antena, receptor y sistema de adquisición y procesamiento de datos.
El sistema de posicionamiento de la antena dirije la misma ("cala" en la jerga astronómica) a la posición que se desea observar, y el reflector principal de la antena recolecta la señal proveniente de esa zona.
El receptor radioastronómico es el encargado de tomar la energía suministrada por la antena y de acondicionar la misma a niveles y frecuencias adecuadas para su registro.
La adquisición y procesamiento de datos se realiza mediante un sistema de computación dedicado.

Dependencias Técnicas
Como en todo observatorio, en el IAR se realizan diversas tareas de desarrollo y mantenimiento de los equipos utilizados para las observaciones radioastronómicas.El responsable general del área observatorio es el Ing. Juan José LARRARTE.

                                                     Proyectos de Investigación

Las investigaciones científicas que se llevan a cabo en el IAR, abarcan diversas ramas de la Astrofísica teórica y observacional. En el Instituto funciona el Grupo GARRA y el Grupo de Estrellas Masivas y Medio Interestelar GEMMI, y se realizan actividades de divulgación y de transferencia tecnológica, por ejemplo el desarrollo y construcción de las antenas de transmisión y recepción de datos para el satélite SAC-D (SAC-D).
Por ejemplo:
*Proyecto LLAMA (acrónimo de Large Latin American Millimeter Array)
*El proyecto LLAMA es un emprendimiento conjunto argentino-brasileño, cuya finalidad es la instalación y puesta en funcionamiento de una antena de 12m de diámetro en el noreste de Argentina, en un sitio ubicado por encima de los 4.500 metros de altura sobre el nivel del mar. Dicho telescopio trabajará en la banda de frecuencias comprendida entre los 90 GHz y los 700 GHz y contará con receptores extremadamente sensibles y sistemas de mando, control y procesamiento de datos. Aunque inicialmente el instrumento funcionaría como un telescopio independiente, uno de los objetivos perseguidos por este proyecto es que el mismo sea el primer elemento de una serie de antenas que conformarán la primera red de interferometría VLBI (Very Long Baseline Interferometry)en latinoamérica. Este modo de funcionamiento permitirá abrir una plétora de posibilidades para realizar investigaciones que necesiten de elevada resolución angular en la banda milimétrica y submilimétrica.


                                                       Actividades que desarrollan

En la institución se llevan a cabo una variada gama de actividades que abarcan tareas propias del observatorio radioastronómico, investigación científica, de desarrollo instrumental, de transferencia de tecnología y tareas de divulgación. La mayoría de sus miembros profesionales también desarrollan actividades académicas de grado y postgrado en Universidades Nacionales.

                                                                      

Investigación 
Las investigaciones científicas que se llevan a cabo en el IAR, abarcan diversas ramas de la Astrofísica teórica y observacional. Un aspecto muy importante a ser tenido en cuenta por los lectores de estas páginas, es que los proyectos de investigación específicos persiguen ciertos objetivos concretos. A menudo para lograr alcanzar los mismos, se debe hacer uso de datos obtenidos en frecuencias en distintos rangos (rayos γ, rayos x, ultravioleta, óptico, infrarrojo cercano y lejano, banda de radio) del espectro electromagnético. Por lo tanto, las líneas de investigación que se desarrollan en el IAR no necesariamente se encuentran restringidas a aquellas que puedan realizarse solo con las observaciones que se obtengan con sus instrumentos.

Transferencia Tecnológica
En los primeros años de ésta década, y por causas diversas, se inician en el IAR actividades en el área de Transferencia Tecnológica. Uno de los motivos fue la aplicación del "know-how" adquirido en el campo de la instrumentación radioastronómica, a la solución de necesidades concretas que surgían de otras áreas, especialmente las de comunicación y la espacial, del que hacer nacional. Inicialmente el Ing. Juan San  fue designado Responsable de ésta incipiente actividad. En la actualidad esa función la desempeña el Ing. Juan José Larrarte. La dinámica inherente a las actividades de transferencia ha permitido en el transcurso de sólo unos pocos años aglutinar en el IAR a numerosos profesionales jóvenes y estudiantes avanzados en diversas ramas de la Ingeniería.
Las actividades tecnológicas inherentes al área observatorio del IAR también se han visto beneficiados por las contribuciones realizadas por éstos jóvenes profesionales.

 


Complejo astronómico “El Leoncito”



                                                        Aspectos Institucionales

El Complejo Astronómico El Leoncito (CASLEO) fue creado formalmente en mayo de 1983 como un Centro Nacional de Servicios para la Comunidad Astronómica mediante un acuerdo entre el CONICET y las Universidades Nacionales de La Plata, Córdoba y San Juan. Entre sus fines y funciones se encuentran el de mantener, operar y administrar las instalaciones a su cargo brindando el servicio de observación astronómica a los investigadores autorizados a operar en su ámbito y efectuar toda otra tarea técnica y científica que contribuya al progreso de la ciencia astronómica.

                                                           Instrumental que posee

Cuenta con un poderoso telescopio que depende del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) denominado “ Jorge Sahade” en honor del precursor de la idea inicial que dio origen a Casleo. Astrónomos de todo el mundo lo visitan para hacer observaciones e investigaciones. El lugar de emplazamiento fue elegido particularmente por la limpidez de su cielo y el clima favorable, que permiten un promedio anual de 270 noches de observación.
La eficiencia general del espectrógrafo en combinación con el telescopio y el detector actual, aún no ha sido medida. Para observar el campo se utiliza una cámara StellaCam o ST-7.
Espectrógrafo REOSCes El espectrógrafo REOSCes un espectrógrafo echelle que pertenece al Institute d'Astrophysique de Liege en Bélgica y se encuentra en préstamo en CASLEO para su uso en el telescopio de 2.15 m. Es un instrumento capaz de trabajar desde 3500 Å hasta 7500 Å y en dos modos operativos: en modo de dispersión cruzada (DC) y en modo de dispersión simple (DS). Para este último se reemplaza la red echelle por un espejo plano. Es necesario señalar que el espectrógrafo puede trabajar más allá de los 7000 Å pero no fue diseñado para ello y por lo tanto su eficiencia puede disminuir en ese rango.

.
                                                     Proyectos de investigación

Las investigaciones tratan sobre objetos de nuestra propia galaxia y también sobre objetos extra galácticos. Entre los temas de investigación mas abordadas estan los siguientes: El origen de las estrellas, La Evolución Química de la Galaxia, Velocidades de alejamiento de las galaxias. CASLEO realiza una amplio programa de divulgación de la ciencia astronómica. Entre 5.000 y 10.000 visitantes por año son recibidos en sus instalaciones en Calingasta para mostrarles las características técnicas de los equipos y el trabajo que con ellos se lleva a cabo.